Indian Statistical Institute Mid-Semestral Examination Differential Topology-MMath II

Max Marks: 40 Time: 3 hours

- (1) Decide whether the following statements are true or false. Justify.
 - (a) The interval [-1, 1] is diffeomorphic to

$$X = \{(x, y) \mid (0 \le x \le 1 \text{ and } y = 0) \text{ or } (x = 1 \text{ and } 0 \le y \le 1)\}.$$

- (b) Every local diffeomorphism $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a diffeomorphism (onto its image).
- (c) Every vector field on \mathbb{R} is complete.
- (d) The determinant map $M_n(\mathbb{R}) \longrightarrow \mathbb{R}$ is a Morse function for $n \geq 2$.
- (e) Every smooth map $f: S^2 \longrightarrow S^1$ has a critical point. $[3 \times 5 = 15]$
- (2) (a) Let $A \in M_n(\mathbb{R})$ be a symmetric matrix. Find all $a \in \mathbb{R}$ so that

$$Z_a = \{ p \in \mathbb{R}^n \mid p^t A p = a \}$$

- is a manifold. Find the dimension of Z_a when it is a manifold. [4]
- (b) Let σ be an integral curve of a vector field X on a smooth manifold M. Suppose that $\dot{\sigma}(t) = 0$ for some t. Show that σ is a constant map. [4]
- (c) Let $f: M \longrightarrow N$ be a smooth map. Smooth vector fields X on M and Y on N are said to be f-related if $df \circ X = Y \circ f$. Suppose that X, X_1 are smooth vector fields on M and Y, Y_1 smooth vector fields on N. (i) If X is f-related to Y and X_1 is f-related to Y_1 show that $[X, X_1]$ is f-related to $[Y, Y_1]$. (ii) Suppose that df(X(p)) = df(X(q)) whenever f(p) = f(q). Is there a smooth vector field Z on N that is f-related to X? [4+3=7]
- (3) (a) Define the term: Morse function. Let $f: U \longrightarrow \mathbb{R}$ be a smooth function defined on an open subset $U \subseteq \mathbb{R}^k$. For $x \in U$, let H(x) denote the Hessian of f at x. Show that f is Morse if and only if

$$\det(H)^2 + \Sigma_i (\partial f/\partial r_i)^2 > 0$$

- on U.
- (b) State the stability theorem. Show by examples that the properties (i) being an immersion, (ii) being transverse to a given submanifold are not stable properties of maps defined on non compact domains. [1+2+2=5]
- (c) Decide whether there exists a bijective submersion $f: S^3 \longrightarrow \mathbb{RP}^2$. [2]